A matemática é uma ferramenta indispensável à engenharia, designadamente a electrotécnica, sendo imprescindível o conhecimento das bases e dos princípios dos vários temas matemáticos.
Esse conhecimento é fundamental para que não haja dúvidas nem erros na opção pela escolha e pela utilização do princípio matemático que deve ser usado em cada problema profi ssional que temos que resolver, designadamente os cálculos a efectuar e a elaboração de algoritmos, sendo também relevante a sua utilização para a definição das leis específicas.
Este último livro tem como objectivo recordar os princípios básicos da matemática, permitir um entendimento das principais leis e apresentar exemplos típicos de utilização da generalidade dos temas abordados.
PREFÁCIO
CAPÍTULO 1 – LÓGICA MATEMÁTICA E TEORIA DE CONJUNTOS
1.1. LÓGICA MATEMÁTICA
1.2. LEIS DE DE MORGAN
1.3. TEORIA DE CONJUNTOS
1.4. ÁLGEBRA DE CONJUNTOS
1.5. ANÉIS E GRUPOS
1.6. ÁLGEBRA DE BOOLE
1.7. APLICAÇÕES
CAPÍTULO 2 – SUCESSÕES E PROGRESSÕES
CAPÍTULO 3 – EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES
3.1. DEFINIÇÕES
3.2. PROPRIEDADES DAS EQUAÇÕES E INEQUAÇÕES
3.3. TIPOS DE EQUAÇÕES E INEQUAÇÕES
3.4. RESOLUÇÃO DE EQUAÇÕES
3.5. RESOLUÇÃO DE INEQUAÇÕES
3.6. EQUAÇÕES COM DUAS INCÓGNITAS
3.7. SISTEMAS DE EQUAÇÕES
3.8. EXEMPLO DE APLICAÇÃO
CAPÍTULO 4 – GEOMETRIA EUCLIDIANA
4.1. INTRODUÇÃO
4.2. TEOREMA DE PITÁGORAS
4.3. TEOREMA DE TALES
4.4. ESTUDO DO TRIÂNGULO
4.5. ÁREAS DE ALGUMAS FIGURAS PLANAS
4.6. VOLUMES DE ALGUNS SÓLIDOS
4.7. MÉDIA GEOMÉTRICA
CAPÍTULO 5 – FUNÇÕES E LIMITES
5.1. DEFINIÇÃO DE APLICAÇÃO E FUNÇÃO
5.2. TIPOS E PROPRIEDADES DAS FUNÇÕES
5.3. FUNÇÕES COMPOSTAS E INVERSAS
5.4. LIMITES – DEFINIÇÕES E PROPRIEDADES
5.5. CÁLCULO DE LIMITES E INDETERMINAÇÕES
CAPÍTULO 6 – EXPONENCIAIS E LOGARITMOS
6.1. FUNÇÕES EXPONENCIAIS – DEFINIÇÃO
6.2. PROPRIEDADES E OPERAÇÕES DAS FUNÇÕES EXPONENCIAIS
6.3. FUNÇÕES LOGARÍTMICAS – DEFINIÇÃO
6.4. PROPRIEDADES E OPERAÇÕES DAS FUNÇÕES LOGARÍTMICAS
6.5. APLICAÇÕES
CAPÍTULO 7 – TRIGONOMETRIA
7.1. INTRODUÇÃO
7.2. AS FUNÇÕES TRIGONOMÉTRICAS
7.3. LEIS E PROPRIEDADES DAS FUNÇÕES TRIGONOMÉTRICAS
7.4. APLICAÇÕES
CAPÍTULO 8 – CÁLCULO VECTORIAL
8.1. DEFINIÇÕES E PROPRIEDADES
8.2. OPERAÇÕES COM VECTORES
8.3. APLICAÇÕES TÍPICAS
CAPÍTULO 9 – SÉRIES
9.1. DEFINIÇÃO
9.2. CLASSIFICAÇÃO E PROPRIEDADES
9.3. SÉRIES DE FUNÇÕES
9.4. SÉRIES DE FOURIER
CAPÍTULO 10 – CÁLCULO DIFERENCIAL E INTEGRAL
10.1. DERIVADA DE UMA FUNÇÃO – DEFINIÇÃO E CONCEITOS GERAIS
10.2. TEOREMAS DE LAGRANGE, ROLLE E CAUCHY
10.3. PROPRIEDADES DAS DERIVADAS
10.4. EQUAÇÕES DIFERENCIAIS
10.5. INTEGRAL DE UMA FUNÇÃO – DEFINIÇÃO E CONCEITOS GERAIS
10.6. GENERALIZAÇÃO DO CONCEITO DE INTEGRAL
10.7. RELAÇÃO ENTRE OS CONCEITOS DE DERIVADA E DE INTEGRAL – PRIMITIVAS
CAPÍTULO 11 – MATRIZES E DETERMINANTES
11.1. DEFINIÇÃO DE MATRIZ E NOTAÇÕES
11.2. OPERAÇÕES COM MATRIZES
11.3. DETERMINANTES
11.4. PROPRIEDADES DOS DETERMINANTES
11.5. RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES COM DETERMINANTES
CAPÍTULO 12 – OPERADORES DIFERENCIAIS
12.1. DEFINIÇÃO GERAL
12.2. PROPRIEDADES GERAIS DO OPERADOR NABLA
12.3. GRADIENTE
12.4. DIVERGÊNCIA
12.5. ROTACIONAL
12.6. DERIVADA DIRECCIONAL
12.7. LAPLACIANO
12.8. RELAÇÕES ENTRE OPERADORES
12.9. EQUAÇÕES DE MAXWELL
CAPÍTULO 13 – FUNÇÕES HIPERBÓLICAS
13.1. INTRODUÇÃO
13.2. AS FUNÇÕES HIPERBÓLICAS
13.3. RELAÇÃO ENTRE AS FUNÇÕES HIPERBÓLICAS E TRIGONOMÉTRICAS
13.4. LEIS E PROPRIEDADES DAS FUNÇÕES HIPERBÓLICAS
13.5. APLICAÇÕES
CAPÍTULO 14 – TRANSFORMADA DE LAPLACE
14.1. INTRODUÇÃO
14.2. DEFINIÇÕES
14.3. PRODUTO DE CONVOLUÇÃO
14.4. PROPRIEDADES DA TRANSFORMADA DE LAPLACE
14.5. RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS
CAPÍTULO 15 – NOÇÕES GERAIS DE PROBABILIDADES E ESTATÍSTICA
15.1. INTRODUÇÃO
15.2. ANÁLISE COMBINATÓRIA
15.3. PROBABILIDADE – DEFINIÇÃO E PROPRIEDADES
15.4. TEORIA DAS PROBABILIDADES
15.5. DISTRIBUIÇÕES DE PROBABILIDADES MAIS UTILIZADAS
15.5.1. Distribuição de Bernoulli
15.5.2. Distribuição Geométrica
15.5.3. Distribuição de Poisson
15.5.4. Distribuição Uniforme
15.5.5. Distribuição Normal ou de Gauss
15.5.6. Distribuição de Weibull
15.6. NOÇÕES BÁSICAS DE ESTATÍSTICA
15.7. MEDIDAS DE DISPERSÃO
15.8. MARGEM DE ERRO E INTERVALO DE CONFIANÇA
ÍNDICE DE TABELAS E FIGURAS
Manuel Bolotinha, MSc, licenciou-se em 1974 em Engenharia Electrotécnica (Ramo de Energia e Sistemas de Potência) no Instituto Superior Técnico – Universidade de Lisboa (IST/UL), onde foi Professor Assistente, e obteve o grau de Mestre em Abril de 2017 em Engenharia Electrotécnica e de Computadores na Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa (FCT-UNL).
Tem desenvolvido a sua actividade profissional nas áreas do projecto, fiscalização de obras e gestão de contratos de empreitadas designadamente de projectos de geração e transporte de energia, instalações industriais e infra-estruturas de distribuição de energia, aero-portuárias e ferroviárias, não só em Portugal, mas também em África, na Ásia e na América do Sul.
Membro Sénior da Ordem dos Engenheiros, é também Formador Profissional, credenciado pelo IEFP, tendo conduzindo cursos de formação, de cujos manuais é autor, em Portugal, África e Médio Oriente.
É também autor de diversos artigos técnicos publicados em Portugal e no Brasil e de livros técnicos, em português e inglês, e tem proferido palestras na OE, ANEP, FCT-UNL, IST e ISEP.