Advanced Wireless Networks presents a comprehensive integral presentation of the main issues in 4G wireless networks, showing the wide scope and inter-relation between different elements of the networks. It provides systematic coverage of the latest global research results in the field of advanced wireless technology networks at a time when the industry is paving the way for 4G. Since the first edition of the book was published in 2006, extensive research has occurred in the field of wireless networks. This has resulted in significant accumulation of new results. The new edition of the book will be fully updated to incorporate these new results. Additions include five new chapters on Adaptive RRM; Convex Optimization; Relay Networks; Opportunistic Communications; and Topology Control and added sections on Throughput Delay Optimisation and Network coding. Each chapter in the book adopts a logical approach, beginning with introductory material, before proceeding to more advanced topics and tools for system analysis. There is detailed analysis of a wide range of topics including higher layer material, adaptive resource management material, cognitive radio networks, ad hoc networks, multi-hop networks, radio resource management and resource optimization, network topology control, physical layer functions, and the state of the art network layering architecture. The scope is thus wide-ranging, yet detailed and amply illustrated with real-life examples. It is a timely and up-to-date resource for those interested in understanding the current approaches and evolving directions for wireless networking.
Preface to the Second Edition. 1 Fundamentals. 1.1 4G Networks and Composite Radio Environment. 1.2 Protocol Boosters. 1.3 Green Wireless Networks. References. 2 Opportunistic Communications. 2.1 Multiuser Diversity. 2.2 Proportional Fair Scheduling. 2.3 Opportunistic Beamforming. 2.4 Opportunistic Nulling in Cellular Systems. 2.5 Network Cooperation and Opportunistic Communications. 2.6 Multiuser Diversity in Wireless Ad Hoc Networks. 2.7 Mobility-Assisted Opportunistic Scheduling (MAOS). 2.8 Opportunistic and Cooperative Cognitive Wireless Networks. References. 3 Relaying and Mesh Networks. 3.1 Relaying Strategies in Cooperative Cellular Networks. 3.2 Mesh/Relay Networks. 3.3 Opportunistic Ad Hoc Relaying For Multicast. References. 4 Topology Control. 4.1 Local Minimum Spanning Tree (LMST) Topology Control. 4.2 Joint Topology Control, Resource Allocation and Routing. 4.3 Fault-Tolerant Topology. 4.4 Topology Control in Directed Graphs. 4.5 Adjustable Topology Control. 4.6 Self-Configuring Topologies. References. 5 Adaptive Medium Access Control. 5.1 WLAN Enhanced Distributed Coordination Function. 5.2 Adaptive MAC for WLAN with Adaptive Antennas. 5.3 MAC for Wireless Sensor Networks. 5.4 MAC for Ad Hoc Networks. References. 6 Teletraffic Modeling and Analysis. 6.1 Channel Holding Time in PCS Networks. References. 7 Adaptive Network Layer. 7.1 Graphs and Routing Protocols. 7.2 Graph Theory. 7.3 Routing with Topology Aggregation. 7.4 Network and Aggregation Models. References. 8 Effective Capacity. 8.1 Effective Traffic Source Parameters. 8.2 Effective Link Layer Capacity. References. 9 Adaptive TCP Layer. 9.1 Introduction. 9.2 TCP Operation and Performance. 9.3 TCP for Mobile Cellular Networks. 9.4 Random Early Detection Gateways for Congestion Avoidance. 9.5 TCP for Mobile Ad Hoc Networks. References. 10 Network Optimization Theory. 10.1 Introduction. 10.2 Layering as Optimization Decomposition. 10.3 Crosslayer Optimization. 10.4 Optimization Problem Decomposition Methods. 10.5 Optimization of Distributed Rate Allocation for Inelastic Utility Flows. 10.6 Nonconvex Optimization Problem in Network with QoS Provisioning. 10.7 Optimization of Layered Multicast by Using Integer and Dynamic Programming. 10.8 QoS Optimization in Time-Varying Channels. 10.9 Network Optimization by Geometric Programming. 10.10 QoS Scheduling by Geometric Programming. References. 11 Mobility Management. 11.1 Introduction. 11.2 Cellular Systems with Prioritized Handoff. 11.3 Cell Residing Time Distribution. 11.4 Mobility Prediction in Pico- and MicroCellular Networks. Appendix: Distance Calculation in an Intermediate Cell. References. 12 Cognitive Radio Resource Management. 12.1 Channel Assignment Schemes. 12.2 Dynamic Channel Allocation with SDMA. 12.3 Packet-Switched SDMA/TDMA Networks. 12.4 SDMA/OFDM Networks with Adaptive Data Rate. 12.5 Intercell Interference Cancellation ? SP Separability. 12.6 Intercell Interference Avoidance in SDMA Systems. 12.7 Multilayer RRM. 12.8 Resource Allocation with Power Preassignment (RAPpA). 12.9 Cognitive and Cooperative Dynamic Radio Resource Allocation. Appendix 12A: Power Control, CD Protocol, in the Presence of Fading. Appendix 12B: Average Intercell Throughput. References. 13 Ad Hoc Networks. 13.1 Routing Protocols. 13.2 Hybrid routing protocol. 13.3 Scalable Routing Strategies. 13.4 Multipath Routing. 13.5 Clustering Protocols. 13.6 Cashing Schemes for Routing. 13.7 Distributed QoS Routing. References. 14 Sensor Networks. 14.1 Introduction. 14.2 Sensor Networks Parameters. 14.3 Sensor networks architecture. 14.4 Mobile Sensor Networks Deployment. 14.5 Directed Diffusion. 14.6 Aggregation in Wireless Sensor Networks. 14.7 Boundary Estimation. 14.8 Optimal Transmission Radius in Sensor Networks. 14.9 DatFunneling. 14.10 Equivalent Transport Control Protocol in Sensor Networks. References. 15 Security. 15.1 Authentication. 15.2 Security Architecture. 15.3 Key Management. 15.4 Security management in GSM networks. 15.5 Security management in UMTS. 15.6 Security architecture for UMTS/WLAN Interworking. 15.7 Security in Ad Hoc Networks. 15.8 Security in Sensor Networks. References. 16 Active Networks. 16.1 Introduction. 16.2 Programable Networks Reference Models. 16.3 Evolution to 4G Wireless Networks. 16.4 Programmable 4G Mobile Network Architecture. 16.5 Cognitive Packet Networks. 16.6 Game Theory Models in Cognitive Radio Networks. 16.7 Biologically Inspired Networks. References. 17 Network Deployment. 17.1 Cellular Systems with Overlapping Coverage. 17.2 Imbedded Microcell in CDMA Macrocell Network. 17.3 Multitier Wireless Cellular Networks. 17.4 Local Multipoint Distribution Service. 17.5 Self-Organization in 4G Networks. References. 18 Network Management. 18.1 The Simple Network Management Protocol. 18.2 Distributed Network Management. 18.3 Mobile Agent-Based Network Management. 18.4 Ad Hoc Network Management. References. 19 Network Information Theory. 19.1 Effective Capacity of Advanced Cellular Networks. 19.2 Capacity of Ad Hoc Networks. 19.3 Information Theory and Network Architectures. 19.4 Cooperative Transmission in Wireless Multihop Ad Hoc Networks. 19.5 Network Coding. 19.6 Capacity of Wireless Networks Using MIMO Technology. 19.7 Capacity of Sensor Networks with Many-to-One Transmissions. References. 20 Energy-efficient Wireless Networks. 20.1 Energy Cost Function. 20.2 Minimum Energy Routing. 20.3 Maximizing Network Lifetime. 20.4 Energy-efficient MAC in Sensor Networks. References. 21 Quality-of-Service Management. 21.1 Blind QoS Assessment System. 21.2 QoS Provisioning in WLAN. 21.3 Dynamic Scheduling on RLC/MAC Layer. 21.4 QoS in OFDMA-Based Broadband Wireless Access Systems. 21.5 Predictive Flow Control and QoS. References. Index.
Savo Glisic, Professor of Telecommunications, University of Oulu, Finland. Professor Glisic obtained his PhD from Cranfield Institute of Technology, UK, before pursuing post doctoral studies at the University of California at San Diego, USA. His areas of interest include radio resource management in wireless mobile IP networks, network management, symbol synchronization in digital communications, automatic decision threshold level control (ADTLC) and frequency hopping modulation for wireless ad hoc networks. He has vast international experience in the field of telecommunications and has published prolifically on the subject, including three previous books with Wiley. Beatriz Lorenzo, University of Oulu Telecommunications Laboratory, Finland.